‫ جهت‌یابی سریع منابع‌صوت ضربه‌ای مبتنی‌بر تفاوت زمان ورود علامت

جهت‌یابی سریع منابع‌صوت ضربه‌ای مبتنی‌بر تفاوت زمان ورود علامت

زهرا حیدری, امین‌اله مه‌آبادی

چکیده

موقعیت‌یابی بی‌درنگ منابع صوتی از پیچیدگی محاسباتی و سرعت‌کم پاسخ رنج می‌برد که به وجود نوفه، انعکاس و معماری چیدمان حسگرها جهت افزایش دقت و سرعت جهت‌یابی وابسته است. ارایه رویکرد مناسب مقیاس‌پذیر با پیچیدگی کم، مقاوم به انعکاس و نوفه‌های طبیعی و مصنوعی جهت افزایش سرعت تصمیم‌گیری با طراحی معماری مناسب از مباحث تحقیقاتی نوین درکاربردهای غیرنظامی و نظامی می‌باشد. این مقاله روش سریع مقیاس‌پذیر جهت‌یابی صوتیِ مقاوم به نوفه‌طبیعی و انعکاس برای تخمین سه‌بعدی جهت‌یابی با استفاده از تکنیک‌ تأخیر زمان ورود علامت‌ها پیشنهاد داده است که با برخورداری از معماری مناسب حسگرها و بکارگیری ‌صافی طیف‌فاز درکنار درون‌یابی اسپلاین مکعبی بدون پیش‌پردازش جهت حذف نوفه، از الگوریتم سریع کمینه‌سازی بدون‌محدودیت متوالی بهره می‌برد. در آزمايشات داده‌های واقعی و مصنوعي ميدان نزديك، میزان خطای زاویه سمت و ارتفاع به‌ترتیب 0/5587 و 1/1652 درجه و در میدان دور به‌ترتیب 0321/0 و 2759/0 درجه است. سرعت بی‌درنگ تعیین جهت برابر 1/006 ‌ثانیه و دارای دقت بالای زاويه تخمين و موقعیت اصلی منبع است.

کلمات کلیدی

آکوستیک, صوت, سیگنال ضربه­‌ای, جهت‌یابی صوتی, تفاوت زمان ورود علامت, ميدان‌ دور, پهن‌باند

مراجع

  • [1] A. D. Pierce, and A. Acoustics, "Introduction to its Physical Principles and Applications," Acoustical Society of America and American Institute of Physics, p. 122, 1981.
  • [2] A. N. Popper, R. R. Fay, and A. N. Popper, Sound source localization. Springer, 2005.
  • [3] T. Damarla, L. M. Kaplan, and G. T. Whipps, "Sniper localization using acoustic asynchronous sensors," IEEE Sensors Journal, vol. 10, no. 9, pp. 1469-1478, 2010.
  • [4] X. Chang, C. Yang, J. Wu, X. Shi, and Z. Shi, "A surveillance system for drone localization and tracking using acoustic arrays," in 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 573-577: IEEE., 2018.
  • [5] Q. Yan, J. Chen, G. Ottoy, and L. De Strycker, "Robust AOA based acoustic source localization method with unreliable measurements," Signal Processing ,vol. 152, pp. 13-21, 2018.
  • [6] D. Gala, N. Lindsay, and L. Sun, "Three-dimensional sound source localization for unmanned ground vehicles with a self-rotational two-microphone array," in Proceedings of the 5th International Conference of Control, Dynamic Systems and Robotics, Niagara Falls, ON, Canada, 2018, pp. 7-9.
  • [7] C. Rascon, and I. Meza, "Localization of sound sources in robotics: A review," Robotics and Autonomous Systems, vol. 96, pp. 184-210, 2017.
  • [8] X. Chen, D. Wang, J. Yin, C. Jia, and Y. Wu, "Bias reduction for TDOA localization in the presence of receiver position errors and synchronization clock bias," EURASIP Journal on Advances in Signal Processing, vol. 2019, no. 1, p. 7, 2019.
  • [9] M. D. Gillette and H. F. Silverman, "A linear closed-form algorithm for source localization from time-differences of arrival," IEEE Signal Processing Letters, vol. 15, pp. 1-4, 2008.
  • [10] H. C. So, Y. T. Chan, and F. K. W. Chan, "Closed-form formulae for time-difference-of-arrival estimation," IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2614-2620, 2008.
  • [11] W. H. Foy, "Position-location solutions by Taylor-series estimation," IEEE Transactions on Aerospace and Electronic Systems, no. 2, pp. 187-194, 1976.
  • [12] H. T. FARD, M. Atashbar, Y. Norouzi, and F. H. KASHANI, "Multireference TDOA-based source localization," Journal of Electrical Engineering & Computer Sciences, no. 21, pp. 1920-1929, 2013.
  • [13] J. Smith, J. Abel, "Closed-form least-squares source location estimation from range-difference measurements," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 12, pp. 1661-1669, 1987.
  • [14] S. S. Haykin, Adaptive filter theory. Pearson Education India, 2008.
  • [15] Y. T. Chan and K. C. Ho, "A simple and efficient estimator for hyperbolic location," IEEE Transactions on signal processing, vol. 42, no. 8, pp. 1905-1915, 1994.
  • [16] P. Wu, S. Su, Z. Zuo, X. Guo, B. Sun, and X. Wen, "Time difference of arrival (TDoA) localization combining weighted least squares and firefly algorithm," Sensors, vol. 19, no. 11, p. 2554, 2019.
  • [17] A. J. Fenwick, "Algorithms for position fixing using pulse arrival times," IEE Proceedings-Radar, Sonar and Navigation, vol. 146, no. 4, pp. 208-212, 1999.
  • [18] B. Jin, X. Xu, and T. Zhang, "Robust time-difference-of-arrival (TDOA) localization using weighted least squares with cone tangent plane constraint," Sensors, vol. 18, no. 3, p. 778, 2018.
  • [19] T. Yan and Y. Zhang, "TDOA Time Delay Estimation Algorithm Based on Cubic Spline Interpolation," in International Conference on Computer Engineering and Networks, 2018, pp. 154-162: Springer.
  • [20] X. Cui, K. Yu, and S. J. Lu, "Approximate closed-form TDOA-based estimator for acoustic direction finding via constrained optimization," IEEE Sensors Journal, vol. 18, no. 8, pp. 3360-3371, 2018.
  • [21] B. Berdugo, M. A. Doron, J. Rosenhouse, and H. Azhari, "On direction finding of an emitting source from time delays," the Journal of the Acoustical Society of America, vol. 105, no. 6, pp. 3355-3363, 1999.
  • [22] Q. Li, B. Chen, and M. J. Yang, "Improved Two-Step Constrained Total Least-Squares TDOA Localization Algorithm Based on the Alternating Direction Method of Multipliers," IEEE Sensors Journal, vol. 20, no. 22, pp. 13666-13673, 2020.
  • [23] B. Jin, X. Xu, and T. Zhang, "Robust time-difference-of-arrival (TDOA) localization using weighted least squares with cone tangent plane constraint," Sensors 18, vol. 18, no. 3, p. 778, 2018.
  • [24] T. Yan and Y. Zhang, "TDOA Time Delay Estimation Algorithm Based on Cubic Spline Interpolation," in International Conference on Computer Engineering and Networks, pp. 154-162: Springer, 2018.
  • [25] X. Cui, K. Yu, and S. Lu, "Approximate closed-form TDOA-based estimator for acoustic direction finding via constrained optimization," IEEE Sensors Journal, vol. 18, no. 8, pp. 3360-3371, 2018.
  • [26] Z. Zhou, Y. Rui, X. Cai, R. Lan, and R. Cheng, "A Closed-Form Method of Acoustic Emission Source Location for Velocity-Free System Using Complete TDOA Measurements,", Sensors 20, vol. 20, no. 12, p. 3553, 2020.
  • [27] H. Chen, T. Ballal, N. Saeed, M. S. Alouini, and T. Al-Naffouri, "A Joint TDOA-PDOA Localization Approach Using Particle Swarm Optimization," IEEE Wireless Communications Letters, vol. 9, no. 8, pp.1240-1244, 2020.
  • [28] B. Berdugo, M. A. Doron, J. Rosenhouse, and H. Azhari, "On direction finding of an emitting source from time delays," the Journal of the Acoustical Society of America, vol. 105, no. 6, pp. 3355-3363, 1999.
  • [29] Q. Li, B. Chen, and M. Yang, "Improved Two-Step Constrained Total Least-Squares TDOA Localization Algorithm Based on the Alternating Direction Method of Multipliers," IEEE Sensors Journal, vol. 20, no. 22, pp. 13666-13673, 2020.