‫ یک سیستم توصیه‌گر در بستر تجارت اجتماعی برای صنعت گردشگری: مبتنی بر شباهت، جوامع اجتماعی، اعتماد و شهرت

یک سیستم توصیه‌گر در بستر تجارت اجتماعی برای صنعت گردشگری: مبتنی بر شباهت، جوامع اجتماعی، اعتماد و شهرت

لیلا اسماعیلی, سید علیرضا هاشمی گلپایگانی, زینب زنگنه ‌مدار

چکیده

اینترنت و سرویس‌های مبتنی بر آن، به طور قابل توجهی کسب و کارهای مختلف از جمله صنعت گردشگری را تحت تاثیر قرار داده و تنوع بسیاری در سرویس‌ها و محصولات آن فراهم آورده‌اند. با افزایش چشمگیر تعداد انتخاب‌ها در بسته‌های سفر، هتل‌ها، جاذبه‌های گردشگری و غیره، پیدا کردن آن چه که گردشگر بدان نیاز دارد، بسیار دشوار شده است. به همین دلیل، سیستم‌های توصیه‌گر گردشگری مورد توجه محققان و کسب و کارها قرار گرفته‌اند. جاذبه‌های گردشگری، اغلب دلیل تمایل افراد به سفر و گردشگری هستند. این تحقیق، یک سیستم توصیه‌گر اجتماعی- ترکیبی را در بستر تجارت اجتماعی پیشنهاد می‌دهد که می‌تواند یک فهرست شخصی‌سازی شده از جاذبه‌های گردشگری برای هر گردشگر، مبتنی بر تشابه تمایلات و علایق کاربران، اعتماد، شهرت، روابط و جوامع اجتماعی ایجاد کند. در مقایسه با روش‌های قدیمی پالایش مشارکتی و مبتنی بر محتوی و ترکیبی، مزیت روش پیشنهاد شده جامعیت به‌کارگیری از فاکتورهای مختلف و لحاظ کردن فاکتور اعتماد در منابع توصیه مانند شناسایی رتبه‌دهی‌های برون هشت می‌باشد. نتایج حاصل از آزمایش‌ها برتری روش پیشنهادی نسبت به سایر روش‌های رایج را تایید می‌کند؛ مدل پیشنهادی، می‌تواند در توصیه سایر محصولات و سرویس‌ها در صنعت گردشگری و دیگر کسب و کارهای اجتماعی بکار گرفته شود.

کلمات کلیدی

تجارت اجتماعی, سیستم توصیه گر, اعتماد, شباهت, جوامع, شهرت, صنعت گردشگری, روابط اجتماعی

مراجع

  • [1] K. Kabassi, "Personalizing recommendations fortourists," Telematics and Informatics, Elsevier, 27, pp.51–66, 2010.
  • [2] K. Wolfe, C. H. C. Hsu, and S. K. Kang, "Buyercharacteristics among users of various travel intermediaries,"Journal of Travel and Tourism Marketing, vol. 17, no. 2/3,pp. 51–62, 2004.
  • [3] L. Esmaeili, M. Nasiri, and B. Minaei-Bidgoli, "Personalizing group recommendation to social networkusers," Web Information Systems and Mining. SpringerBerlin Heidelberg, pp. 124-133, 2011.
  • [4] R. T. Wigand, R. I. Benjamin, and J. Birkland, "Web 2.0and beyond: implications for electronic commerce," InProceedings of the 10th International Conference onElectronic Commerce, Austria,ACMPress, New York, 2008.
  • [5] G. Dennison, S. Bourdage-Braun, and M. Chetuparambil, "Social commerce defined," White paper #23747, IBMCorporation, Research Triangle Park, NC, November 2009.
  • [6] U. Gretzel, and K. Yoo, "Useand impact of online travelreviews," In: O’Connor, P., Hopken, W., Gretzel, U. (Eds.),Information and Communication Technologies in Tourism.Springer-Verlag, Wien, New York, pp. 35–46, 2008.
  • [7] Y. A. Kim, and J. Srivastava, "Impact of social influencein e-commerce decision making," In Proceedings of theNinth International Conference on Electronic Commerce,Minneapolis, MN, ACM Press, New York, pp. 293–302,2007.
  • [8] T. Liang, Y. Ho, Y. Li, and E. Turban, "What drivessocial commerce: the role ofsocial support and relationshipquality," International Journal of Electronic Commerce,16, 2, pp. 69–90, 2011.
  • [9] S. Parise, and P. J. Guinan, "Marketing using Web 2.0. InR. Sprague (ed.)," Proceedings of the 41st HawaiiInternational Conference on System Sciences, Hawaii, IEEEComputer Society Press, Washington, DC, 2008.
  • [10] M. McPherson, L. Smith-Lovin, and J. M. Cook, "Birdsof a Feather: Homophily in Social Networks," AnnualReview of Sociology. 27, pp. 415–444, 2001.
  • [11] Z. Huang, and M. Benyoucef, "From e-commerce tosocial commerce: A close look atdesign features," ElectronicCommerce Research and Applications, Elsevier B. V., 12,pp. 246-259, 2013.
  • [12] A. Lew, "A framework oftourist attraction research,"Annals of Tourism Research, 14, pp. 533–575, 1987.
  • [13] G. Richards, "Tourism attraction systems-exploringcultural behavior," Annals of Tourism Research, vol. 29, no.4, pp. 1048–1064, 2002.
  • [14] C.-C. Chang, and K.-H. Chu, "A Recommender SystemCombining Social Networks for Tourist Attractions," FifthInternational Conference on Computational Intelligence,Communication Systems and Networks, IEEE ComputerSociety, pp. 42-47, 2013.
  • [15] D. J. Kim, D. L. Ferrin, and H. R. Rao, "A trust-basedconsumer decision-making model in electronic commerce:the role of trust, perceived risk, and their antecedents,"Decision Support Systems, vol. 44, no. 2, pp. 544–564, 2008.
  • [16] L. Xiong, and L. Liu, "A Reputation-Based Trust Modelfor Peer-to-Peer eCommerce Communities," Proceedings ofthe 2004 IEEE International Symposium on ClusterComputing and the Grid, Washington, DC, USA, 2004.
  • [17] L. Mui, M. Mohtashemi, and A. Halberstadt, "AComputational Model of Trust and Reputation forE-businesses," Proceedings ofthe 35th Annual HawaiiInternational Conference on System Sciences, WashingtonDC, USA, 2002.
  • [18] J. He, and W.W. Chu, "A Social Network-BasedRecommender System (SNRS)," Data Mining for SocialNetwork Data, Springer Berlin Heidelberg, vol. 12, pp.47-74, 2010.
  • [19] J. Kamahara, T. Asakawa, S. Shimojo, and H. Miyahara, "A Community-based Recommendation System to RevealUnexpected Interests," Proceedings of the 11th InternationalMultimedia Modelling Conference (MMM’05), IEEEComputer Society, 2005.
  • [20] J. Ben Schafer, J. Konstan, and J. Riedl, "Recommendersystems in e-commerce," Proceedings of the 1st ACMconference on Electronic commerce, New York, USA, 1999.
  • [21] L. Esmaeili, B. Minaei-Bidgoli, H. Alinejad-Rokny, andM. Nasiri, "Hybrid Recommender System for Joining VirtualCommunities," Research Journal of Applied Sciences,Engineering and Technology, vol. 4, Issue 5, pp. 500-509,2012.
  • [22] H. J. Ahn, "A new similarity measure for collaborativefiltering to alleviate the new user cold-starting problem,"Information Sciences, vol. 178, no. 1, pp. 37–51, 2008.
  • [23] Y. Yang, and N. C. Marques, "User group profilemodeling based on user transactional data for personalizedsystems," Lecture Notes in Computer Science, LNCS 3808,pp. 337–347, 2005.
  • [24] Y. Huang, and L. Bian, "A Bayesian network andanalytic hierarchy process based personalizedrecommendations for tourist attractions over the Internet,"Expert Systems with Applications, vol. 36, no. 1, pp. 933–943, 2009.
  • [25] S. Schiaffino, and A. Amandi, "Building an expert travelagent as a software agent," Expert Systems withApplications, 36, pp. 1291–1299, 2009.
  • [26] A. García-Crespo, J. Chamizo, I. Rivera, M. Mencke, R.Colomo-Palacios, and J. M. Gómez-Berbís, "SPETA: Socialpervasive e-Tourism advisor," Telematics and Informatics,vol. 26, no. 3, pp. 306–315, 2009.
  • [27] A. Josang, R. Ismail, and C. Boyd, "A survey of trustand reputation systems for online service provision,"Decision Support Systems, vol. 43, no. 2, pp. 618–644, 2007.
  • [28] D. W. Manchala, "E-commerce trust metrics andmodels," IEEE journal of Internet Computing, vol. 4, Issue 2,2000
  • [29] J. Chen, O. R. Zaiane, and R. Goebel, "DetectingCommunities in social networks using Max-MinModularity," SIAM International Conference On DataMining - SDM, pp. 978-989, 2009.
  • [30] M. Planti´e and M. Crampes, “Survey on SocialCommunity Detection,” Social Media Retrieval, SpringerPublishers (Ed.), pp. 65-85, 2013.
  • [31] U. Hanani, B. Shapira, and P. Shoval, "Informationfiltering: overview of issues, research and systems," UserModeling and User-Adapted Interaction, vol. 11, no. 3, pp.203–259, 2001.
  • [32] G. Adomavicius, and A. Tuzhilin, "Toward the nextgeneration of recommender systems: A survey of the state-of-the-art and possible extensions," IEEE Transactions onKnowledge and Data Engineering, vol. 17, no. 6, pp.734–749, 2005.
  • [33] R. Alton-Scheidl, R. Schumutzer, P. P. Sint, and G.Tscherteu, "Voting andRating in Web4Groups,"Oldenbourg, Vienna, Austria, pp. 13–103, 1997.
  • [34] L. Esmaeili, M. Mutallebi, Sh. Mardani, S. A. HashemiG., "Studying the Affecting Factors on Trust in SocialCommerce," International Journal of Advanced Studies inComputer Science & Engineering, vol. 4, no. 6, pp. 41-46,2015.
  • [35] S. A. Hashemi G., L. Esmaeili, S. Mardani, and S. M.Mutallebi Esfidvajani, "A Survey of Trust in SocialCommerce," E-Systems for the21st Century: Concept,Developments, and Applications, Book chapter, vol. 1,Chapter 1, 2016.
  • [36] J. Tang, H. Gao, X.Hu, and H. Liu. "Exploitinghomophily effect for trust prediction," In Proceedings of thesixth ACM international conference on Web search and datamining, ACM, pp. 53–62, 2013.
  • [37] H. Zardi, L. B. Romdhane, and Z. Guessoum, "A multi-agent Homophily-based-Approach for community detectionin social networks," 2014IEEE 26th InternationalConference on Tools withArtificial Intelligence, IEEEComputer Society, pp. 501-505, 2014.
  • [38] A. Abdul-Rahman, and S. Hailes, "Supporting trust invirtual communities," Proceedings of the HawaiiInternational Conference on System Sciences, Maui, Hawaii,4–7 January, 2000.
  • [39] P. DeMeo, A. Nocera, G. Terracina, and D. Ursino, "Recommendation of similar users, resources and socialnetworks in a social internetworking scenario," InformationSciences, vol. 181, no. 7, pp. 1285–1305, 2011.
  • [40] Pareto principle, https://en.wikipedia.org/wiki/Pareto_principle, Last access: 12/19/2016.
  • [41] Mean squared error, https://en.wikipedia.org/wiki/Mean_squared_error, Last access: 12/19/2016.
  • [42] J. B. Schafer, J. A. Konstan, and J. Riedl, "E-commercerecommendation applications," DataMining and KnowledgeDiscovery, vol. 5, no. 1–2, pp. 115–153, 2001.
  • [43] P. Lops, M. de Gemmis, and G, Semeraro, "Content-based Recommender Systems: State of the Art and Trends,"Recommender Systems Handbook, Springer, Chapter 3, pp.73-105, 2011.