بررسی روش‌های موقعیت‌یابی منابع صوتی پهن‌باند مبتنی‌بر تفاوت زمان ورود

نویسندگان

گروه مهندسی کامپیوتر و فناوری اطلاعات، دانشکده فنی مهندسی، دانشگاه شاهد، تهران، ایران

چکیده

جهت‌یابی و مکان‌یابی صوتی از خصیصه‌های مهم انسان و موجوداتی است که به واسطه‌ قدرت و حساسیت حس شنوایی‌شان به این فرآیند پاسخ می‌دهند. جهت‌یابی و مکان‌یابی منابع صوتی توسط سامانه‌های حسگر از موضوعات تحقیقاتی پر‌سابقه در حوزه پردازش علامت است. موقعیت‌یابی خودکار منابع صوتی با چالش‌های متعددی روبرو خواهد بود که دقت تخمین مختصات منبع و سرعت دقیق رسیدن به‌ آن بسیار مهم و مساله سخت است. تفاوت زمان ورود علامت به علت برخورداری از پیچیدگی کم محاسباتی و سادگی روش برای داده‌های عظیم صوتی بسیار مورد توجه بوده و این مقاله با تمرکز بر مبانی رویکرد تفاوت زمان ورود، به بررسی روش‌ها و چالش‌های آن می‌پردازد. آخرین روش‌های علمی و مهم از جهت مبانی صوت، فنون موقعیت‌یابی، ساختار الگوریتم، روش‌های حل مساله، معماری حسگرهای صوتی و چالش‌های موجود آن‌ها مقایسه شده است. 

کلیدواژه‌ها

  • [1] J. George, and M. K. Lance, “Shooter Localization using a Wireless Sensor Network of Soldier-Worn Gunfire Detection Systems.” J. Adv. Inf. Fusion, vol. 8, no. 1, pp. 15-32, 2013.
  • [2] H. Kuttruff, “Acoustics: an introduction,” CRC Press, pp. 1-380, 2007.
  • [3] T. Damarla, “Battlefield Acoustics,” Springer, pp. 1-152, 2015.
  • [4] F. Dunn, W. Hartmann, D. Campbell, and N. H. Fletcher, “Springer handbook of acoustics,” Springer, pp. 1-10, 2015.
  • [5] J. Liang, J. D. Aronson, and A. Hauptmann, “Technical Report of the Video Event Reconstruction and Analysis (VERA) System--Shooter Localization, Models, Interface, and Beyond,” arXiv preprint arXiv:1905.13313, 2019.
  • [6] S. Argentieri, P. Danès, and P. Souères, “A survey on sound source localization in robotics: From binaural to array processing methods,” Computer Speech & Language, Elsevier, vol. 34, no. 1, pp. 87-112, 2015.
  • [7] A. N. Popper, and R. R. Fay, “Sound source localization,” Springer, pp. 1-5, 2005.
  • [8] B. Piper, R. Barham, S. Sheridan, and K. Sotirakopoulos, "Exploring the “big acoustic data” generated by an acoustic sensor network deployed at a cross rail construction site," Proceedings of the 24th International Congress on Sound and Vibration (ICSV), London, UK, pp. 23-27, 2017.
  • [9] P. N. H. Duc, A. Degurse , J. Allemandou, O. Adam, P. R. White, O. Gerard, R. Fablet and D. Cazau, "A scalable Hadoop/Spark framework for general-purpose analysis of high volume passive acoustic data," OCEANS 2019-Marseille. IEEE, pp. 1-7, 2019.
  • [10] A. Tyagi, S. Kumar, and M. Trivedi, “Sound Localization in 3-D Space Using Kalman Filter and Neural Network for Human like Robotics,” Networking Communication and Data Knowledge Engineering: Springer, pp. 227-243, 2018.
  • [11] Y. Bai, L. Lu, J. Cheng, J. Liu, Y. Chen, and J. Yu, “Acoustic-based sensing and applications: A survey,” Computer Networks, vol. 181, p. 107-447, 2020.
  • [12] T. Damarla, L. M. Kaplan, and G.T. Whipps, “Sniper localization using acoustic asynchronous sensors,” Computer Networks, vol. 10, no. 9, pp. 1469-1478, 2010.
  • [13] X. Chang, C. Yang, J. Wu, X. Shi, and Z. Shi, “A surveillance system for drone localization and tracking using acoustic arrays,” 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 573-577, 2018.
  • [14] Y. Qingli, C. Jianfeng, and O. Geoffrey, “Robust AOA based acoustic source localization method with unreliable measurements,” Signal Processing, vol. 152, pp. 13-21, 2018.
  • [15] D. Gala, N. Lindsay, and L. Sun, “Three-dimensional sound source localization for unmanned ground vehicles with a self-rotational two-microphone array,” Proceedings of the 5th International Conference of Control, Dynamic Systems and Robotics, Niagara Falls, Canada, pp. 7-9, 2018.
  • [16] C. Rascon, and I. Meza, “Localization of sound sources in robotics: A review,” Robotics and Autonomous Systems, vol. 96, pp. 184-210, 2017.
  • [17] J. Benesty, J. Chen, and Y. Huang, “Microphone array signal processing,” Springer Science & Business Media, 2008.
  • [18] H. W. Löllmann, “The LOCATA challenge data corpus for acoustic source localization and tracking,” 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 410-414, 2018.
  • [19] H. Wang, “Research on Passive Acoustic Source Direction Finding Based on TDOA,” Recent Developments in Intelligent Computing, Communication and Devices: Springer, pp. 199-205, 2019.
  • [20] A. Hughes, “Acoustic source localization and tracking using microphone arrays,” The University of Edinburgh, 2016.
  • [21] L. Kraljević, M. Russo, M. Stella, and M. Sikora, “Free-Field TDOA-AOA Sound Source Localization Using Three Sound Field Microphones,” IEEE Access, vol. 8, pp. 87749-87761, 2020.
  • [22] W. Dan, L. Yan, and X. Shujie, “Broadband DOA Estimation Based on Nested Arrays,” Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering, pp. 87-91, 2018.
  • [23] W. Yu, N. D. Gaubitch, and R. Heusdens, “Distributed TDOA-based indoor source localization,” 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6887-6891, 2018.
  • [24] A. Spriet, “Adaptive filtering techniques for noise reduction and acoustic feedback cancellation in hearing aids,” 2004.
  • [25] T. Dutoit, and F. Marques, “Applied Signal Processing: A MATLABTM-based proof of concept,” Springer Science & Business Media, 2010.
  • [26] P. Stoica, “Introduction to spectral analysis,” Prentice hall, 1997.
  • [27] I. Ziskind, and M. Wax, "Maximum likelihood localization of multiple sources by alternating projection,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 10, pp. 1553-1560, 1988.
  • [28] Z. Xu, N. Liu, and B. M. Sadler, "A simple closed-form linear source localization algorithm," MILCOM 2007-IEEE Military Communications Conference, pp. 1-7, 2007.
  • [29] A. Le Pichon, E. Blanc, and A. Hauchecorne, “Infrasound monitoring for atmospheric studies,” Springer Science & Business Media, 2010.
  • [30] Y. Li, “Broadband beamforming and direction finding using concentric ring array,” University of Missouri--Columbia, 2005.
  • [31] R.E. Slyh, R.L. Moses, and T.R. Anderson, “Analysis/synthesis-based microphone array speech enhancer with variable signal distortion,” Google Patents, 1996.
  • [32] S. Lang, M. Kleinehagenbrock, S. Hohenner, J. Fritsch, G.A. Fink, and G. Sagerer, “Providing the basis for human-robot-interaction: A multi-modal attention system for a mobile robot,” Proceedings of the 5th international conference on Multimodal interfaces, pp. 28-35, 2003.
  • [33] H. Chen, C. Liu, and Q. Chen, “Efficient and robust approaches for three-dimensional sound source recognition and localization using humanoid robots" sensor arrays,” International Journal of Advanced Robotic Systems, vol. 17, no. 4, p.1729881420941357, 2020.
  • [34] M. Raspaud, H. Viste, and G. Evangelista, “Binaural source localization by joint estimation of ILD and ITD,” IEEE transactions on audio, speech, and language processing, vol. 18, no. 1, pp. 68-77, 2009.
  • [35] B. A. Wright, and M. B. Fitzgerald, “Different patterns of human discrimination learning for two intermural cues to sound-source location,” Proceedings of the National Academy of Sciences, vol. 98, no. 21, pp. 12307-12312, 2001.
  • [36] P. Yang, Q. Xu, and L. Zu, “Auditory system design based on mobile robot,” 2009 Second International Conference on Intelligent Networks and Intelligent Systems, pp. 265-268, 2009.
  • [37] S. Lee, Y. Park, and J.-S. Choi, “Estimation of multiple sound source directions using artificial robot ears,” Applied acoustics, Elsevier, vol. 77, pp. 49-58, 2014.
  • [38] A. Pourmohammad, and S. M. Ahadi, “TDE-ILD-HRTF-Based 2D Whole-Plane Sound Source Localization Using Only Two Microphones and Source Counting,” International Journal of Information and Electronics Engineering, vol. 2, no. 3, p. 307, 2012.
  • [39] H. L. Van Trees, “Optimum array processing: Part IV of detection, estimation, and modulation theory,” John Wiley & Sons, 2004.
  • [40] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276-280, 1986.
  • [41] Z. Zhou, Y. Rui, X. Cai, R. Lan, and R. Cheng, “A Closed-Form Method of Acoustic Emission Source Location for Velocity-Free System Using Complete TDOA Measurements,” Sensors, vol. 20, no. 12, p. 3553, 2020.
  • [42] Y. Jiang, Q. Hu, and D. Yang, “Analysis of positioning error for two-dimensional location system,” Mathematical Problems in Engineering, vol. 2013, 2013.
  • [43] A. Canclini, P. Bestagini, F. Antonacci, M. Compagnoni, A. Sarti, and S. Tubaro, “A robust and low-complexity source localization algorithm for asynchronous distributed microphone networks,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, no. 10, pp. 1563-1575, 2015.
  • [44] B. Jin, X. Xu, and T. Zhang, “Robust time-difference-of-arrival (TDOA) localization using weighted least squares with cone tangent plane constraint,” Sensors, vol. 18, no. 3, p. 778, 2018.
  • [45] R. Boora, and S. K. Dhull, “A TDOA-based multiple source localization using delay density maps,” Springer, vol. 45, no. 1, pp. 1-12, 2020.
  • [46] G. C. Carter, “Coherence and time delay estimation: an applied tutorial for research, development, test, and evaluation engineers, Piscataway,” ed: NJ: IEEE Press, 1993.
  • [47] C. Knapp, and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE transactions on acoustics, speech, and signal processing, vol. 24, no. 4, pp. 320-327, 1976.
  • [48] J. Chen, J. Benesty, and Y. Huang, “Time delay estimation using spatial correlation techniques,” Proceedings of the 8th International Workshop Acoustic Echo and Noise Control (IWAENC"03), pp. 207-210, 2003.
  • [49] J. Benesty, J. Chen, and Y. Huang, “Time-delay estimation via linear interpolation and cross correlation,” IEEE Transactions on speech and audio processing, vol. 12, no. 5, pp. 509-519, 2004.
  • [50] K. Gedalyahu, and Y. C. Eldar, “Time-delay estimation from low-rate samples: A union of subspaces approach,” IEEE Transactions on Signal Processing, vol. 58, no. 6, pp. 3017-3031, 2010.
  • [51] H. Khaddour, “A comparison of algorithms of sound source localization based on time delay estimation,” elektrorevue 2, vol. 2, no. 1, pp. 31-37, 2011.
  • [52] L. Chen, Y. Liu, F. Kong, and N. He, “Acoustic source localization based on generalized cross-correlation time-delay estimation,” Procedia engineering, vol. 15, pp. 4912-4919, 2011.
  • [53] R. Hanus, “Time delay estimation of random signals using cross-correlation with Hilbert Transform,” Measurement, vol. 146, pp. 792-799, 2019.
  • [54] Bharathi, B. Marxim Rahula, and A. R. Mohanty. "Time delay estimation in reverberant and low SNR environment by EMD based maximum likelihood method." Measurement, vol. 137, pp. 655-663, 2019.
  • [55] M. D. Gillette, and H. F. Silverman, “A linear closed-form algorithm for source localization from time-differences of arrival,” IEEE Signal Processing Letters, vol. 15, pp. 1-4, 2008.
  • [56] H.C. So, Y. T. Chan, and F. K. W. Chan, “Closed-form formulae for time-difference-of-arrival estimation,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2614-2620, 2008.
  • [57] W. H. Foy, “Position-location solutions by Taylor-series estimation,” IEEE Transactions on Aerospace and Electronic Systems, no. 2, pp. 187-194, 1976.
  • [58] H. T. FARD, M. Atashbar, Y. Norouzi, and F. H. KASHANI, “Multireference TDOA-based source localization,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 21, no. Sup. 1, pp. 1920-1929, 2013.
  • [59] J. Smith, and J. Abel, “Closed-form least-squares source location estimation from range-difference measurements,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 12, pp. 1661-1669, 1987.
  • [60] R. O. Schmidt, “A new approach to geometry of range difference location,” IEEE Transactions on Aerospace and Electronic Systems, no. 6, pp. 821-835, 1972.
  • [61] B. Friedlander, “A passive localization algorithm and its accuracy analysis,” IEEE Journal of Oceanic engineering, vol. 12, no. 1, pp. 234-245, 1987.
  • [62] H. Schau, and A. Robinson, “Passive source localization employing intersecting spherical surfaces from time-of-arrival differences,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 8, pp. 1223-1225, 1987.
  • [63] J. Smith, and J. Abel, “The spherical interpolation method of source localization,” IEEE Journal of Oceanic Engineering, vol. 12, no. 1, pp. 246-252, 1987.
  • [64] J. S. Abel, “A divide and conquer approach to least-squares estimation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 2, pp. 423-427, 1990.
  • [65] S. Haykin, “Adaptive filter theory,” Pearson Education India 1996.
  • [66] B. T. Fang, “Simple solutions for hyperbolic and related position fixes,” IEEE transactions on aerospace and electronic systems, vol. 26, no. 5, pp. 748-753, 1990.
  • [67] Y. T. Chan, and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Transactions on signal processing, vol. 42, no. 8, pp. 1905-1915, 1994.
  • [68] P. Wu, S. Su, Z. Zuo, X. Guo, B. Sun, and X. Wen, “Time difference of arrival (TDoA) localization combining weighted least squares and firefly algorithm,” Sensors, vol. 19, no. 11, p. 2554, 2019.
  • [69] A. J. Fenwick, “Algorithms for position fixing using pulse arrival times,” IEE Proceedings-Radar, Sonar and Navigation, vol. 146, no. 4, pp. 208-212, 1999.
  • [70] K. W. Cheung, H. C. So, W. K. Ma, and Y.-T. Chan, “A constrained least squares approach to mobile positioning: algorithms and optimality,” EURASIP Journal on Advances in Signal Processing, vol. 2006, no. 1, p. 020858, 2006.
  • [71] L. Lin, H.-C. So, F.K. Chan, Y.-T. Chan, and K. Ho, “A new constrained weighted least squares algorithm for TDOA-based localization,” Signal Processing, Elsevier, vol. 93, no. 11, pp. 2872-2878, 2013.
  • [72] X. Qu, and L. Xie, “Source localization by TDOA with random sensor position errors—part I: static sensors,” 2012 15th International Conference on Information Fusion, IEEE, pp. 48-53, 2012.
  • [73] K. Yang, J. An, X. Bu, and G. Sun, “Constrained total least-squares location algorithm using time-difference-of-arrival measurements,” IEEE Transactions on Vehicular Technology, vol. 59, no. 3, pp. 1558-1562, 2009.
  • [74] X. Qu, and L. Xie, “An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements,” Signal Processing, Elsevier, vol. 119, pp. 142-152, 2016.
  • [75] Q. Li, B. Chen, and M. Yang, “Improved Two-Step Constrained Total Least-Squares TDOA Localization Algorithm Based on the Alternating Direction Method of Multipliers,” IEEE Sensors Journal, vol. 20, no. 22, pp. 13666-13673, 2020.
  • [76] D. Carevic, “Automatic estimation of multiple target positions and velocities using passive TDOA measurements of transients,” IEEE Transactions on Signal Processing, vol. 55, no. 2, pp. 424-436, 2007.
  • [77] J. Schroeder, S. Galler, and K. Kyamakya, “A low-cost experimental ultra-wideband positioning system,” 2005 IEEE International Conference on Ultra-Wideband, pp. 632-637, 2005.
  • [78] G. Wang, Y. Li, and N. Ansari, “A semidefinite relaxation method for source localization using TDOA and FDOA measurements,” IEEE Transactions on Vehicular Technology, vol. 62, no. 2, pp. 853-862, 2012.
  • [79] K. Yang, G. Wang, and Z. Luo, “Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals,” IEEE transactions on signal processing, vol. 57, no. 7, pp. 2775-2784, 2009.
  • [80] H. Chen, T. Ballal, N. Saeed, M. S. Alouini, and T. Y. Al-Naffouri, “A Joint TDOA-PDOA Localization Approach Using Particle Swarm Optimization,” IEEE Wireless Communications Letters, 2020.
  • [81] J. Kennedy, and R. Eberhart, “Particle swarm optimization. Encycl,” IEEE, vol. 4, pp. 1942-1948, 1995.
  • [82] N. Strobel, S. Spors, and R. Rabenstein, “Joint audio-video signal processing for object localization and tracking,” Microphone Arrays, Springer, pp. 203-225, 2001.
  • [83] D. B. Ward, E. A. Lehmann, and R. C. Williamson, “Particle filtering algorithms for tracking an acoustic source in a reverberant environment,” IEEE Transactions on speech and audio processing, vol. 11, no. 6, pp. 826-836, 2003.
  • [84] A. K. Z. Tehrani, B. Makkiabadi, A. Pourmohammad, and S. H. Hozhabr, “Sound source localization using time differences of arrival; Euclidean distance matrices-based approach,” 2018 9th International Symposium on Telecommunications (IST), IEEE, pp. 91-95, 2018.
  • [85] A. Pourmohammad, and S. M. Ahadi, “TDE-ILD-based 2D half plane real time high accuracy sound source localization using only two microphones and source counting,” 2010 International Conference on Electronics and Information Engineering, IEEE, vol. 1, pp. V1-566, 2010.
  • [86] A. Pourmohammad, and S. M. Ahadi, “N-dimensional N-microphone sound source localization,” EURASIP Journal on Audio, Speech, and Music Processing, Springer, vol. 2013, no. 1, p. 27, 2013.
  • [87] K. Ho, X. Lu, and L. Kovavisaruch, “Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution,” IEEE Transactions on Signal Processing, vol. 55, no. 2, pp. 684-696, 2007.
  • [88] K. Ho and W. Xu, “An accurate algebraic solution for moving source location using TDOA and FDOA measurements,” IEEE Transactions on Signal Processing, vol. 52, no. 9, pp. 2453-2463, 2004.
  • [89] J. A. Apolinário, H. Yazdanpanah, A. Nascimento, and M. L. de Campos, “A Data-selective LS Solution to TDOA-based Source Localization,” ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4400-4404, 2019.
  • [90] Z. Zhou , Y. Rui, J. Zhou, L. Dong, L. Chen, X. Cai, and R. Cheng, “A new closed-form solution for acoustic emission source location in the presence of outliers,” Applied Sciences, vol. 8, no. 6, p. 949, 2018.
  • [91] S. J. Arrowsmith et al., “Regional monitoring of infrasound events using multiple arrays: application to Utah and Washington State,” Geophysical Journal International, vol. 175, no. 1, pp. 291-300, 2008.
  • [92] R. J. Kozick, and B. Sadler, “Source localization with distributed sensor arrays and partial spatial coherence,” IEEE Transactions on Signal Processing, vol. 52, no. 3, pp. 601-616, 2004.
  • [93] L. Dong, “Some developments and new insights for microseismic/acoustic emission source localization,” Shock and Vibration, Hindawi, vol. 2019, 2019.
  • [94] T. Ballal and C. J. Bleakley, “Phase-difference ambiguity resolution for a single-frequency signal,” IEEE Signal Processing Letters, vol. 15, pp. 853-856, 2008.
  • [95] H. Chen, T. Ballal, M. Saad, and T. Y. Al-Naffouri, “Angle-of-arrival-based gesture recognition using ultrasonic multi-frequency signals,” 2017 25th European Signal Processing Conference (EUSIPCO), IEEE, pp. 16-20, 2017.
  • [96] M. Delcourt, Le Boudec, and Jean-Yves, “TDOA Source-Localization Technique Robust to Time-Synchronization Attacks,” IEEE Transactions on Information Forensics and Security, 2020.
دوره 19، شماره 1
بهار و تابستان
اردیبهشت 1400