آزمون دروغ‌سنجی مبتنی بر تلفیق اطلاعات آشوبناک کانال‌های سیگنال الکتروانسفالوگرام

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده علوم و فناوری های نوین، دانشگاه سمنان، سمنان، ایران

2 استادیار، دانشکده علوم و فناوری های نوین، دانشگاه سمنان، سمنان، ایران

3 استادیار، دانشکده مهندسی پزشکی، دانشگاه صنعتی همدان، همدان، ایران

چکیده

در سال‌های اخیر استفاده از مؤلفه P300 در آزمون دانش گناهکار، از روش‌های پرکاربرد به شمار می‌رود. در مطالعات مختلف، کانال Pz  به عنوان کانال حاوی بیشترین اطلاعات مربوط به این مؤلفه شناخته شده‌است. با این وجود، پژوهش‌های دیگر نشان داده‌اند که کانال‌های Fz و Cz نیز اطلاعات مفیدی از مؤلفه‌ی P300  ارائه می‌دهند. بنابراین، حل چالش استفاده توأمان و بهینه از اطلاعات این سه کانال می‌تواند در بهبود نتایج حاصل از آزمون دروغ‌سنجی مؤثر واقع شود. در این مقاله به منظور استخراج اطلاعات مرتبط با مؤلفه P300، از تجزیه تحلیل کمّی بازرخداد سیگنال الکتروانسفالوگرام بهره گرفته شد. از سوی دیگر به منظور تلفیق اطلاعات آشوبناک این سه کانال، از رویکردهای تلفیق اطلاعات در سطح ویژگی و در سطح تصمیم‌گیری استفاده شد. برای تلفیق اطلاعات در سطح ویژگی دو روش (1) تلفیق تمامی ویژگی‌های سه کانال و تشکیل یک بردار کلی و (2) انتخاب ویژگی‌های بهینه از بردار مذکور با استفاده از الگوریتم ژنتیک مدنظر قرار گرفت. به منظور تلفیق اطلاعات در سطح تصمیم‌گیری نیز احتمال پسین وزن‌دار هر کلاس بر اساس بردارهای ویژگی و قابلیت اطمینان‌ هر کانال محاسبه شد و برای تشخیص افراد گناهکار و بی‌گناه مورد استفاده قرار گرفت. از میان رویکردهای پیشنهادی، رویکرد تلفیق اطلاعات در سطح تصمیم‌گیری با صحت 90 درصد، حساسیت 86/67 درصد و ویژه بودن 93/33 درصد نشان‌دهنده برتری این روش در قیاس با رویکردهای پیشنهادی دیگر است. علاوه بر این، سرعت اجرای پردازش‌های مربوط به این روش نسبت به روش مبتنی بر الگوریتم ژنتیک بسیار بالاتر است.

کلیدواژه‌ها

  • [1] M. Gamer and S. Berti, “Task relevance and recognition of concealed information have different influences on electrodermal activity and event-related brain potentials,” Psychophysiology, vol. 47, no. 2, pp. 355–364, 2010.
  • [2] National Research Council. "Committee to review the scientific evidence on the polygraph." The polygraph and lie detection. 2003
  • [3] L. A. Farwell and E. Donchin, “The Truth Will Out: Interrogative Polygraphy (‘Lie Detection’) With Event‐Related Brain Potentials,” Psychophysiology, vol. 28, no. 5, pp. 531–547, 1991.
  • [4] J. P. Rosenfeld, J. Ellwanger, and J. Sweet, “Detecting simulated amnesia with event-related brain potentials,” International Journal of Psychophysiology, vol. 19, no. 1, pp. 1–11, 1995.
  • [5] A. H. Mehrnam, A. M. Nasrabadi, M. Ghodousi, A. Mohammadian, and S. Torabi, “Reprint of ‘A new approach to analyze data from EEG-based concealed face recognition system,’” International Journal of Psychophysiology, vol. 122, no. January 2016, pp. 17–23, 2017.
  • [6] V. Abootalebi, M. H. Moradi, and M. A. Khalilzadeh, “A new approach for EEG feature extraction in P300-based lie detection,” Computer Methods and Programs in Biomedicine, vol. 94, no. 1, pp. 48–57, 2009.
  • [7] J. Gao, H. Tian, Y. Yang, X. Yu, C. Li, and N. Rao, “A novel algorithm to enhance P300 in single trials: Application to lie detection using F-score and SVM,” PLoS ONE, vol. 9, no. 11, 2014.
  • [8] M. A. Mubeen and K. H. Knuth, “Evidence-Based Filters for Signal Detection: Application to Evoked Brain Responses,” Jul. 2011, Accessed: Jul. 08, 2020. [Online]. Available: http://arxiv.org/abs/1107.1257
  • [9] V. Abootalebi, M. H. Moradi, and M. A. Khalilzadeh, “A comparison of methods for ERP assessment in a P300-based GKT,” International Journal of Psychophysiology, vol. 62, no. 2, pp. 309–320, 2006.
  • [10] N. Saini, S. Bhardwaj, and R. Agarwal, “Classification of EEG signals using hybrid combination of features for lie detection,” Neural Computing and Applications, vol. 32, no. 8, pp. 3777–3787, 2020.
  • [11] V. Abootalebi, “Computer Brain Communication (BCI) using ERP cognitive components,” 2003. [Online]. Available: https://civilica.com/doc/55111/
  • [12] A. Akhavan and M. H. Moradi, “Detection of Concealed Information Using Multichannel Discriminative Dictionary and Spatial Filter Learning,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 10, pp. 2616–2627, 2018.
  • [13] A. Turnip, M. F. Amri, H. Fakrurroja, A. I. Simbolon, M. A. Suhendra, and D. E. Kusumandari, “Deception detection of EEG-P300 component classified by SVM method,” ACM International Conference Proceeding Series, pp. 299–303, 2017.
  • [14] M. R. Bhutta, M. J. Hong, Y. H. Kim, and K. S. Hong, “Single-trial lie detection using a combined fNIRS-polygraph system,” Frontiers in Psychology, vol. 6, no. JUN, pp. 1–9, 2015.
  • [15] J. F. Gao, Y. Yang, W. T. Huang, P. Lin, S. Ge, H. M. Zheng, L. Y. Gu, H. Zhou, C. H. Li, & N. N. Rao, “Exploring time-and frequency-dependent functional connectivity and brain networks during deception with single-trial event-related potentials,” Scientific Reports, vol. 6, no. November, pp. 1–13, 2016.
  • [16] A. Arasteh, A. Janghorbani, and M. H. Moradi, “A survey on EMD sensitivity to SNR for EEG feature extraction in BCI application,” 2010.
  • [17] A. Arasteh, M. H. Moradi, and A. Janghorbani, “A Novel Method Based on Empirical Mode Decomposition for P300-Based Detection of Deception,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 11, pp. 2584–2593, 2016.
  • [18] L. Hu, A. Mouraux, Y. Hu, and G. D. Iannetti, “A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials,” NeuroImage, vol. 50, no. 1, pp. 99–111, Mar. 2010.
  • [19] C. Saavedra, R. Salas, and L. Bougrain, “Wavelet-based semblance methods to enhance the single-trial detection of event-related potentials for a BCI spelling system,” Computational Intelligence and Neuroscience, vol. 2019, 2019.
  • [20] A. H. Mehrnam, A. M. Nasrabadi, A. Mohammadian, and S. Torabi, “Concealed face recognition analysis based on recurrence plots,” 2011 18th Iranian Conference of Biomedical Engineering, ICBME 2011, no. December, pp. 1–4, 2011.
  • [21] N. Marwan, M. Carmen Romano, M. Thiel, and J. Kurths, “Recurrence plots for the analysis of complex systems,” Physics Reports, vol. 438, no. 5–6, pp. 237–329, 2007.
  • [22] S. Martín-González, J. L. Navarro-Mesa, G. Juliá-Serdá, G. M. Ramírez-Ávila, and A. G. Ravelo-García, “Improving the understanding of sleep apnea characterization using Recurrence Quantification Analysis by defining overall acceptable values for the dimensionality of the system, the delay, and the distance threshold,” PLoS ONE, vol. 13, no. 4, Apr. 2018.
  • [23] J. P. Eckmann, O. Oliffson Kamphorst, and D. Ruelle, “Recurrence plots of dynamical systems,” Epl, vol. 4, no. 9, pp. 973–977, 1987.
  • [24] N. Talebi and A. M. Nasrabadi, “Recurrence plots for identifying memory components in single-trial EEGs,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6334 LNAI, pp. 124–132, 2010.
  • [25] S. Schinkel, N. Marwan, and J. Kurths, “Brain signal analysis based on recurrences,” Journal of Physiology Paris, vol. 103, no. 6, pp. 315–323, 2009.
  • [26] F. Bahari and A. Janghorbani, “EEG-based emotion recognition using Recurrence Plot analysis and K nearest neighbor classifier,” 2013 20th Iranian Conference on Biomedical Engineering, ICBME 2013, no. Icbme, pp. 228–233, 2013.
  • [27] M. B. Khodabakhshi and V. Saba, “A nonlinear dynamical approach to analysis of emotions using EEG signals based on the Poincare map function and recurrence plots,” Biomedical Engineering/Biomedizinische Technik, vol. 65, no. 5, pp. 507–520, 2020.
  • [28] I. Gruszczyńska, R. Mosdorf, P. Sobaniec, M. Żochowska-Sobaniec, and M. Borowska, “Epilepsy identification based on EEG signal using RQA method,” Advances in Medical Sciences, vol. 64, no. 1, pp. 58–64, 2019.
  • [29] J. Polich, Detection of change: event-related potential and fMRI findings., Norwell, MA:: Kluwer Academic Publishers, 2003.
  • [30] J. Polich, “Updating P300: An integrative theory of P3a and P3b,” Clinical Neurophysiology, vol. 118, no. 10. NIH Public Access, pp. 2128–2148, Oct. 2007.
  • [31] J. Polich and J. R. Criado, “Neuropsychology and neuropharmacology of P3a and P3b,” International Journal of Psychophysiology, vol. 60, no. 2, pp. 172–185, 2006.
  • [32] T. Zhu, W. Luo, and F. Yu, “Multi-branch convolutional neural network for automatic sleep stage classification with embedded stage refinement and residual attention channel fusion,” Sensors (Switzerland), vol. 20, no. 22, pp. 1–15, 2020.
  • [33] M. BalaKrishnan, P. Colditz, and B. Boashash, “A Multi-Channel Fusion Based Newborn Seizure Detection,” Journal of Biomedical Science and Engineering, vol. 07, no. 08, pp. 533–545, 2014.
  • [34] B. Boashash and S. Ouelha, “Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study,” Knowledge-Based Systems, vol. 106, pp. 38–50, 2016.
  • [35] Q. Liu, Y. Liu, K. Chen, L. Wang, Z. Li, Q. Ai, & L. Ma, “Research on channel selection and multi‐feature fusion of EEG signals for mental fatigue detection,” Entropy, vol. 23, no. 4, 2021.
  • [36] S. Saravanan and S. Govindarajan, “Novel feature extraction of EEG signal for accurate event detection,” International Journal of Medical Engineering and Informatics, vol. 12, no. 4, pp. 336–344, 2020.
  • [37] V. Abootalebi, M. H. Moradi, and M. A. Khalilzadeh, “A new approach for EEG feature extraction in P300-based lie detection,” Computer Methods and Programs in Biomedicine, vol. 94, no. 1, pp. 48–57, 2009.
  • [38] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classifiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226–239, 1998.
  • [39] B. Kaur, P. Kumar, P. P. Roy, and D. Singh, “Impact of ageing on EEG based biometric systems,” Proceedings - 4th Asian Conference on Pattern Recognition, ACPR 2017, pp. 459–464, 2018.
  • [40] M. Mesbah, M. Balakrishnan, P. B. Colditz, and B. Boashash, “Automatic seizure detection based on the combination of newborn multi-channel EEG and HRV information Advances in Nonstationary Electrophysiological Signal Analysis and Processing,” Eurasip Journal on Advances in Signal Processing, vol. 2012, no. 1, pp. 1–14, 2012.
  • [41] G. P. King and I. Stewart, “Phase space reconstruction for symmetric dynamical systems,” Physica D: Nonlinear Phenomena, vol. 58, no. 1–4, pp. 216–228, 1992.
  • [42] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical systems and turbulence, Warwick 1980, Springer, 1981, pp. 366–381, [Online]. Available: http://www.springer.com/gp/book/9783540111719
  • [43] S. Wallot and D. Mønster, “Calculation of Average Mutual Information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in matlab,” Frontiers in Psychology, vol. 9, no. SEP, Sep. 2018.
  • [44] N. Marwan, J. F. Donges, Y. Zou, R. v. Donner, and J. Kurths, “Complex network approach for recurrence analysis of time series,” Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 373, no. 46, pp. 4246–4254, 2009.
  • [45] N. Marwan, “How to avoid potential pitfalls in recurrence plot based data analysis,” International Journal of Bifurcation and Chaos, vol. 21, no. 4, pp. 1003–1017, 2011.
  • [46] D. A. Coley, “An Introduction to Genetic Algorithms for Scientists and Engineers,” World Scientific Publishing Co.Pte.Ltd, 1999.
  • [47] D. E. Goldberg and J. H. Holland, “Genetic Algorithms and Machine Learning,” Mach. Learn., vol. 3, no. 2, pp. 95–99, 1988.
  • [48] M. Arun Kumar and M. Gopal, “Least squares twin support vector machines for pattern classification,” Expert Systems with Applications, vol. 36, no. 4, pp. 7535–7543, 2009.
  • [49] N. H. Farhat, “Photonit neural networks and learning mathines the role of electron-trapping materials,” IEEE Expert-Intelligent Systems and their Applications, vol. 7, no. 5, pp. 63–72, 1992.
  • [50] D. Morariu, L. N. Vintan, and V. Tresp, “Feature Selection Methods for an Improved SVM Classifier,” International Journal of Intelligent, no. 4, pp. 575–585, 2006, [Online]. Available: http://webspace.ulbsibiu.ro/daniel.morariu/html/docs/ICIS2006Prague.pdf
  • [51] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, pp. 189–215, 2020.
  • [52] A. Janghorbani and M. H. Moradi, “Fuzzy Evidential Network and Its Application as Medical Prognosis and Diagnosis Models,” Journal of Biomedical Informatics, vol. 72, pp. 96–107, 2017.
  • [53] W. Hou, D. Li, C. Xu, H. Zhang, and T. Li, "An advanced k nearest neighbor classification algorithm based on KD-tree." In 2018 IEEE International Conference of Safety Produce Informatization (IICSPI), pp. 902-905. IEEE, 2018.
  • [54] M. Batra and R. Agrawal, “Comparative analysis of decision tree algorithms,” Advances in Intelligent Systems and Computing, vol. 652, pp. 31–36, 2018.
  • [55] M. Injadat, F. Salo, A. B. Nassif, A. Essex, and A. Shami, “Bayesian Optimization with Machine Learning Algorithms Towards Anomaly Detection,” 2018 IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings, 2018.
  • [56] M. Pelikan, “Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms,” SICE 2003 Annual Conference in Fukui, pp. 547–552, 2003, [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1323811
دوره 19، شماره 1
بهار و تابستان
اردیبهشت 1400