پیاده‌سازی سیستم تطبیقی فازی-عصبی در مدل‌سازی و تخمین حالت شارژ باتری‌های لیتیوم-یون

نویسندگان

دانشکده فنی و مهندسی، دانشگاه شاهد، تهران، ایران

چکیده

در این مقاله با بکارگیری یک شبکه عصبی فازی‌ و براساس مدل فضای حالت باتری‌های لیتیوم-یون، حالت شارژ باطری تخمین زده می‌شود. داده‌های آزمایشگاهی نمونه‌برداری از باتری، عبارتند از سیگنال‌های ولتاژ و جریان پایانه‌های باتری که برای مدلسازی باتری مورد استفاده قرار می‌گیرند. با اجرای پنجره لغزان، پارامترهای مدل سیستم در پنجره‌های کاری مختلف براساس روش کمترین مربعات خطا شناسایی شده و با استفاده از یک شبکه عصبی فازی‌ آموزش داده می‌شوند. سپس از تئوری فیلتر کالمن بهره برده و یک الگوریتم جهت تخمین حالت شارژ ارائه می‌شود. سه دسته داده عملی از اطلاعات ولتاژ و جریان باتری به صورت جداگانه جمعآوری شده و برای آموزش شبکه عصبی فازی‌ ، تعیین صحت عملکرد تخمین پیشنهادی و مدل آموزش یافته، بکار گرفته می‌شوند. برای هر سه دسته از داده‌ها، مقایسه تخمین به روش پیشنهادی و روش‌های فیلتر تطبیقی H و EKF و SRUKF صورت پذیرفت که نتایج نشان می‌داد روش پیشنهادی در تمام حالات از شاخص خطای تخمین مناسب‌تری برخوردار می‌باشد.

کلیدواژه‌ها

  • [1] H. He, R. Xiong, X. Zhang, F. Sun, and J. Fan, “State-of-charge estimation of the Lithium-Ion battery using an adaptive extended Kalman filter based on an improved Thevenin model,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1461–1469, 2011.
  • [2] G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2 . Modeling and identification,” J. Power Sources, vol. 134, no. 2, pp. 262–276, 2004.
  • [3] S.-J. Huang, B.-G. Huang, and F.-S. Pai, “An approach to measurements of electrical characteristics of lithium-ion battery with open-circuit voltage function,” IET Power Electron., vol. 5, no. 9, pp. 1968–1975, 2012.
  • [4] L. Pei, R. Lu, and C. Zhu, “Relaxation model of the open-circuit voltage for state-of-charge estimation in lithium-ion batteries,” IET Electr. Syst. Transp., vol. 3, no. 4, pp. 112–117, 2013.
  • [5] V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, “State-of-the-art of battery state-of-charge determination,” Meas. Sci. Technol., vol. 16, no. 12, pp. R93–R110, 2005.
  • [6] S. Piller, M. Perrin, and A. Jossen, “Methods for state-of-charge determination and their applications,” J. Power Sources, vol. 96, no. 1, pp. 113–120, 2001.
  • [7] S. X. Chen, H. B. Gooi, N. Xia, and M. Q. Wang, “Modeling of lithium-ion battery for online energy management systems,” IET Electr. Syst. Transp., vol. 2, no. 4, pp. 202–210, 2012.
  • [8] Z. Chen, Y. Fu, and C. ChrisMi, “State of charge estimation of Lithium-Ion batteries in electric drive vehicles using extended Kalman filtering,” IEEE Trans. Veh. Technol., vol. 62, no. 3, pp. 1020–1030, 2013.
  • [9] J. Kim, S. Lee, and B. H. Cho, “Complementary cooperation clgorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 436–451, 2012.
  • [10] R. Xiong, H. He, F. Sun, and K. Zhao, “Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach,” IEEE Trans. Veh. Technol., vol. 62, no. 1, pp. 108–117, 2013.
  • [11] G. L. Plett, “Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2 : Simultaneous state and parameter estimation,” vol. 161, no. 2, pp. 1369–1384, 2006, doi: 10.1016/j.jpowsour.2006.06.004.
  • [12] H. Rahimi-Eichi, F. Baronti, and M.-Y. Chow, “Online adaptive parameter identification and state-of-charge coestimation for Lithium-Polymer battery cells,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 2053–2061, 2014.
  • [13] M. Charkhgard and M. H. Zarif, “Design of adaptive H∞ filter for implementing on state-of-charge estimation based on battery state-of-charge-varying modelling,” IET Power Electron., vol. 8, no. 10, pp. 1825–1833, 2015, doi: 10.1049/iet-pel.2014.0523.
  • [14] D. Labarre, E. Grivel, N. Christov, and M. Najim, “Dual H∞ algorithms for signal processing, application to speech enhancement,” IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5195–5208, 2007.
  • [15] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, 1st ed. USA: John Wiley & Sons, INC, 2006.
  • [16] F. Zhang, G. Liu, L. Fang, and H. Wang, “Estimation of battery state of charge with H∞ observer: applied to a robot for inspecting power transmission lines,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1086–1095, 2012.
  • [17] C. H. Cai, D. Du, and Z. Y. Liu, “Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS),” in Fuzzy Systems, 2003, pp. 1068–1073.
  • [18] C.-H. Cai, Dong-Du, Z.-Y. Liu, and H. Zhang, “Artificial neural network in estimation of battery state of-charge (SOC) with nonconventional input variables selected by correlation analysis,” in Machine Learning and Cybernetics, 2002, pp. 1619–1625.
  • [19] C. Cai, D. Du, Z. Liu, and J. Ge, “State-of-charge (SOC) estimation of high power Ni-MH rechargeable battery with artificial neural network,” in Neural Information Processing, 2002, pp. 824–828.
  • [20] J. Peng, Y. Chen, and R. Eberhart, “Battery pack state of charge estimator design using computational intelligence approaches,” in Battery Conference on Applications and Advances, 2000, pp. 173–177.
  • [21] T. Yamazaki, K. Sakurai, and K. Muramoto, “Estimation of the residual capacity of sealed lead-acid batteries by neural network,” in Telecommunications Energy Conference, 1998, pp. 210–214.
  • [22] B. S. Bhangu, P. Bentley, D. A. Stone, and C. M. Bingham, “Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles,” IEEE Trans. Veh. Technol., vol. 45, no. 3, pp. 783–794, 2005.
  • [23] S. Pang, J. Farrell, J. Du, and M. Barth, “Battery state-of-charge estimation,” in American Control Conference, 2001, pp. 1644–1649.
  • [24] M. Charkhgard and M. Farrokhi, “State-of-charge estimation for Lithium-Ion batteries using neural networks and EKF,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4178–4187, 2010.
  • [25] Y. He, X. T. Liu, C. Bin Zhang, and Z. H. Chen, “A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries,” Appl. Energy, vol. 101, pp. 808–814, 2013.
  • [26] G. L. Plett, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation,” J. Power Sources, vol. 134, no. 2, pp. 277–292, 2004.
  • [27] R. Van der Merwe and E. A. Wan, “The square-root unscented Kalman filter for state and parameter-estimation,” in Acoustics, Speech, and Signal Processing, 2001.
  • [28] H. Gholizade-narm and M. Charkhgard, “Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter,” IET Power Electron., vol. 6, no. 9, pp. 1833–1841, 2013, doi: 10.1049/iet-pel.2012.0706.
  • [29] J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst. Man. Cybern., vol. 23, no. 3, pp. 665–685, 1993.
  • [30] T. O. Ting, K. L. Man, C.-U. Lei, and C. Lu, “State-of-charge for battery management system via Kalman filter,” Eng. Lett., vol. 22, no. 2, p. EL_22_2_05, 2014.
  • [31] S. Haykin, Kalman Filtering and Neural Networks, 1st ed. USA: John Wiley & Sons, INC, 2001.
دوره 19، شماره 1
بهار و تابستان
اردیبهشت 1400