مروری بر مشارکت مراکز داده توزیع شده در برنامه های پاسخ تقاضای شبکه هوشمند برق

نویسندگان

دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

با افزایش روزافزون استفاده از خدمات رایانش ابری و سرویس‌های اینترنت، ارائه‌دهندگان این سرویس‌ها ترغیب می‌شوند تا مراکز داده بزرگتر و به تعداد بیشتر ایجاد نمایند. در سال‌های اخیر، میزان انرژی مصرفی این مراکز به طور چشمگیری افزایش یافته است که تاثیرات قابل توجهی نیز بر کارایی شبکه برق دارد. پاسخ تقاضای مراکز داده یکی از راه‌حل‌های موثر به منظور تشویق اپراتورهای مراکز داده برای تطبیق میزان مصرفشان با شرایط شبکه است. مشارکت موثر مراکز داده نه تنها می‌تواند بر کارایی شبکه برق تاثیر بگذارد، بلکه سبب کاهش هزینه‌های برق مصرفی سرویس‌دهندگان خواهد شد. اپراتورهای مراکز داده نه تنها امکان شیفت زمانی بارهای کاری خود را دارند، بلکه با بهره‌گیری از مراکز داده توزیع‌شده و همچنین از طریق همکاری با یکدیگر در قالب اتحادیه‌ها می‌توانند بارهای کاری خود را بصورت مکانی مهاجرت داده، تا از مزایای فراهم شده توسط برنامه‌های پاسخ تقاضای وابسته به مکان نیز بهره‌مند شوند. در این راستا، پژوهشگران راهکارهای گوناگونی را برای بهره‌گیری از انعطاف مراکز داده توزیع‌شده به منظور بهبود مشارکت آن‌ها در برنامه‌های پاسخ تقاضا ارائه کرده‌اند. این مقاله به مرور و دسته‌بندی این روش‌ها می‌پردازد. در این راستا، در ابتدا، پیش‌زمینه‌ای در مورد مفاهیمی همچون شبکه هوشمند برق، برنامه-های پاسخ تقاضا، تعامل مراکز داده با شبکه و اتحادیه‌های ابری بیان شده است. در ادامه به مرور و دسته‌بندی پژوهش‌های انجام شده در حوزه مورد بحث پرداخته شده است. در پایان نیز کاستی‌ها و مسیر  پیش روی این حوزه بیان شده است.

کلیدواژه‌ها

  • [1] J. S. Vardakas, N. Zorba, and C. V. Verikoukis, “A Survey on Demand Response Programs in Smart Grids: Pricing Methods and Optimization Algorithms,” IEEE Commun. Surv. Tutorials, vol. 17, no. 1, pp. 152–178, 2015.
  • [2] P. Siano, “Demand response and smart grids-A survey,” Renew. Sustain. Energy Rev., vol. 30, pp. 461–478, 2013.
  • [3] M. Chen, C. Gao, M. Song, S. Chen, D. Li, and Q. Liu, “Internet data centers participating in demand response: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 117, no. 2, 2020.
  • [4] Y. Wang, X. Lin, and M. Pedram, “A stackelberg game-based optimization framework of the smart grid with distributed PV power generations and data centers,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 978–987, 2014.
  • [5] Cisco Global Cloud, “Forecast and Methodology, 2016–2021,” White paper, Cisco public, vol. 6, 2017.
  • [6] M. Smolakes, “Synergy: Number of hyperscale data centers reached 430 in 2018.” https://www.datacenterdynamics.com.
  • [7] J. Koomey, “Growth in Data Center Electricity use 2005 to 2010,” A report by Analytical Press, completed at the request of The New York Times, vol. 9, no. 2011, 2011.
  • [8] M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in Data Centre Energy Consumption under the European Code of Conduct for Data Centre Energy Efficiency,” Energies, vol. 10, no. 10, 2017.
  • [9] W. Deng, F. Liu, H. Jin, and C. Wu, “SmartDPSS: Cost-minimizing multi-source power supply for datacenters with arbitrary demand,” in Proceedings of International Conference on Distributed Computing Systems, 2013, pp. 420–429.
  • [10] A. Vafamehr and M. E. Khodayar, “Energy-aware cloud computing,” Electr. J., vol. 31, no. 2, pp. 40–49, 2018.
  • [11] G. Ghatikar, V. Ganti, and N. Matson, “Demand Response Opportunities and Enabling Technologies for Data Centers : Findings from Field Studies,” 2012.
  • [12] A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad, “Opportunities and challenges for data center demand response,” 2014 Int. Green Comput. Conf. (IGCC), 2015.
  • [13] G. Fridgen, R. Keller, M. Thimmel, and L. Wederhake, “Shifting load through space–The economics of spatial demand side management using distributed data centers,” Energy Policy, vol. 109, pp. 400–413, 2017.
  • [14] Z. Liu, I. Liu, S. Low, and A. Wierman, “Pricing data center demand response,” Perform. Eval. Rev., vol. 42, no. 1, pp. 111–123, 2014.
  • [15] H. Chen, Y. Zhang, M. C. Caramanis, and A. K. Coskun, “EnergyQARE: QoS-aware data center participation in smart grid regulation service reserve provision,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 4, no. 1, pp. 1–31, 2019.
  • [16] A. Kertesz, “Characterizing Cloud Federation Approaches,” in Cloud Computing, 2014, pp. 277–296.
  • [17] M. Giacobbe, A. Celesti, M. Fazio, M. Villari, and A. Puliafito, “Towards energy management in Cloud federation: A survey in the perspective of future sustainable and cost-saving strategies,” Comput. Networks, vol. 91, pp. 438–452, 2015.
  • [18] L. Niu and Y. Guo, “Enabling reliable data center demand response via aggregation,” in Proceedings of the 7th International Conference on Future Energy Systems, e-Energy 2016, 2016, pp. 235–245.
  • [19] Z. Zhou, F. Liu, Z. Li, and H. Jin, “When smart grid meets geo-distributed cloud: An auction approach to datacenter demand response,” in Proceedings of 2015 IEEE Conference on Computer Communications (INFOCOM), 2015, vol. 26, pp. 2650–2658.
  • [20] P. Luo, X. Wang, H. Jin, Y. Li, and X. Yang, “Load management for multiple datacenters towards demand response in the smart grid integrating renewable energy,” in ACM International Conference Proceeding Series, 2018, pp. 140–144.
  • [21] P. Wang, L. Rao, X. Liu, and Y. Qi, “Dynamic power management of distributed internet data centers in smart grid environment,” In IEEE Global Telecommunications Conference (GLOBECOM), 2011, pp. 1-5.
  • [22] R. Kaewpuang, S. Chaisiri, D. Niyato, B. S. Lee, and P. Wang, “Cooperative virtual machine management in smart grid environment,” IEEE Trans. Serv. Comput., vol. 7, no. 4, pp. 545–560, 2014.
  • [23] M. M. Moghaddam, M. H. Manshaei, M. N. Soorki, W. Saad, M. Goudarzi, and D. Niyato, “On coordination of smart grid and cooperative cloud providers,” IEEE Systems Journal. vol. 15, no. 1, pp. 1–12, 2021.
  • [24] A. Rahman, X. Liu, and F. Kong, “A survey on geographic load balancing based data center power management in the smart grid environment,” IEEE Commun. Surv. Tutorials, vol. 16, no. 1, pp. 214–233, 2014.
  • [25] M. Zhao and X. Wang, “A Survey of Research on Datacenters Using Energy Storage Devices to Participate in Smart Grid Demand Response,” in Proceedings of IEEE International Conference on Power, Intelligent Computing and Systems, ICPICS, 2020, pp. 22–26.
  • [26] T. L. Vasques, P. Moura, and A. de Almeida, “A review on energy efficiency and demand response with focus on small and medium data centers,” Energy Effic., vol. 12, no. 5, pp. 1399–1428, 2019.
  • [27] F. Kong and X. Liu, “A survey on green-energy-aware power management for datacenters,” ACM Comput. Surv., vol. 47, no. 2, pp. 1–38, 2014.
  • [28] P. Huang et al., “A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating,” Appl. Energy, vol. 258, no. 114109, 2020.
  • [29] Y. Allahvirdizadeh, M. P. Moghaddam, and H. Shayanfar, “A survey on cloud computing in energy management of the smart grids,” Int. Trans. Electr. Energy Syst., vol. 29, no. 10, pp. 1–22, 2019.
  • [30] N. Good, K. A. Ellis, and P. Mancarella, “Review and classification of barriers and enablers of demand response in the smart grid,” Renew. Sustain. Energy Rev., vol. 72, pp. 57–72, 2017.
  • [31] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling: A survey,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 732–794, 2016.
  • [32] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J. M. Pierson, and A. V. Vasilakos, “Cloud computing: Survey on energy efficiency,” ACM Comput. Surv., vol. 47, no. 2, pp. 1–36, 2015.
  • [33] A.-H. Mohsenian-Rad and A. Leon-Garcia, “Coordination of Cloud Computing and Smart Power Grids,” In First IEEE International Conference on Smart Grid Communications, 2010, pp. 368–372.
  • [34] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud computing environments: Challenges, taxonomy, and survey,” ACM Comput. Surv., vol. 47, no. 1, pp. 1–47, 2014.
  • [35] K. Le, J. Zhang, J. Meng, R. Bianchini, Y. Jaluria, and T. D. Nguyen, “Reducing electricity cost through virtual machine placement in high performance computing clouds,” In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, 2011, pp. 1-12.
  • [36] A.-H. Mohsenian-Rad and A. Leon-Garcia, “Energy-information transmission tradeoff in green cloud computing,” Carbon N. Y., vol. 100, 2010.
  • [37] H. Hu, Y. Wen, L. Yin, and L. Qiu, “Towards cost-efficient workload scheduling for a Tango between geo-distributed data center and power grid,” in 2016 IEEE International Conference on Communications, ICC, 2016, pp. 1–7.
  • [38] H. Hu, Y. Wen, L. Yin, L. Qiu, and D. Niyato, “Coordinating Workload Scheduling of Geo-Distributed Data Centers and Electricity Generation of Smart Grid,” IEEE Trans. Serv. Comput., vol. 14, no. 8, 2017.
  • [39] Y. Fan, Y. Xia, Y. Liu, and X. Yuan, “Electricity Cost Management for Cloud Data Centers under Diverse Delay Constraints,” in 3rd IEEE International Conference on Cyber Security and Cloud Computing, CSCloud 2016 and 2nd IEEE International Conference of Scalable and Smart Cloud, SSC 2016, 2016, pp. 12–19.
  • [40] Z. Xu and W. Liang, “Minimizing the operational cost of data centers via geographical electricity price diversity,” in IEEE International Conference on Cloud Computing, CLOUD, 2013, pp. 99–106.
  • [41] Y. Li et al., “Towards dynamic pricing-based collaborative optimizations for green data centers,” in Proceedings of International Conference on Data Engineering, 2013, pp. 272–278.
  • [42] H. Wang and Z. Ye, “Renewable energy-aware demand response for distributed data centers in smart grid,” In IEEE Green Energy and Systems Conference (IGSEC), 2016, pp. 1-8.
  • [43] Z. Guo, Z. Duan, Y. Xu, and H. J. Chao, “JET: Electricity cost-aware dynamic workload management in geographically distributed datacenters,” Comput. Commun., vol. 50, pp. 162–174, 2014.
  • [44] H. Wang, J. Huang, X. Lin, and H. Mohsenian-Rad, “Proactive Demand Response for Data Centers: A Win-Win Solution,” IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1584–1596, 2016.
  • [45] G. S. Aujla, M. Singh, N. Kumar, and A. Y. Zomaya, “Stackelberg Game for Energy-Aware Resource Allocation to Sustain Data Centers Using RES,” IEEE Trans. Cloud Comput., vol. 7, no. 4, pp. 1109–1123, 2019.
  • [46] P. Luo, X. Wang, H. Jin, Y. Li, and X. Yang, “Smart-grid-aware load regulation of multiple datacenters towards the variable generation of renewable energy,” Appl. Sci., vol. 9, no. 3, 2019.
  • [47] B. Camus, A. Blavette, F. Dufosse, and A. C. Orgerie, “Self-Consumption Optimization of Renewable Energy Production in Distributed Clouds,” in Proceedings of IEEE International Conference on Cluster Computing, ICCC, 2018, pp. 370–380.
  • [48] C. Gu, L. Fan, W. Wu, H. Huang, and X. Jia, “Greening cloud data centers in an economical way by energy trading with power grid,” Futur. Gener. Comput. Syst., vol. 78, pp. 89–101, 2018.
  • [49] S. Bahrami, V. W. S. Wong, and J. Huang, “Data Center Demand Response in Deregulated Electricity Markets,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2820–2832, 2019.
  • [50] S. Bahrami, Y. C. Chen, and V. W. S. Wong, “An Online Algorithm for Data Center Demand Response,” In 53rd Annual Conference on Information Sciences and Systems (CISS), pp. 1-6., 2019.
  • [51] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost: Optimization of distributed internet data centers in a multi-electricity-market environment,” in Proceedings of 29th IEEE Conference on Computer Communications (INFOCOM), 2010, pp. 1–9.
  • [52] L. Rao, X. Liu, L. Xie, and W. Liu, “Coordinated energy cost management of distributed internet data centers in smart grid,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 50–58, 2012.
  • [53] P. Wang, L. Rao, X. Liu, and Y. Qi, “D-Pro: Dynamic data center operations with demand-responsive electricity prices in smart grid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1743–1754, 2012.
  • [54] Y. Zhang, Y. Wang, and X. Wang, “Electricity bill capping for cloud-scale data centers that impact the power markets,” in Proceedings of the International Conference on Parallel Processing, 2012, pp. 440–449.
  • [55] L. Yu, T. Jiang, and Y. Zou, “Price-sensitivity aware load balancing for geographically distributed internet data centers in smart grid environment,” IEEE Trans. Cloud Comput., vol. 6, no. 4, pp. 1125–1135, 2018.
  • [56] L. Rao, X. Liu, L. Xie, and Z. Pang, “Hedging against uncertainty: A tale of Internet data center operations under smart grid environment,” IEEE Trans. Smart Grid, vol. 2, no. 3, pp. 555–563, 2011.
  • [57] L. Yu, T. Jiang, Y. Cao, S. Yang, and Z. Wang, “Risk management in Internet Data Center operations under smart grid environment,” in 2012 IEEE 3rd International Conference on Smart Grid Communications, SmartGridComm 2012, 2012, pp. 384–388.
  • [58] L. Yu, T. Jiang, Y. Cao, and J. Wu, “Risk-constrained operation for internet data centers under smart grid environment,” 2013.
  • [59] W. Qi and J. Li, “Towards optimal coordinated operation of distributed internet data center microgrids,” in IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5.
  • [60] Y. Wang, X. Lir, and M. Pedram, “A sequential game perspective and optimization of the smart grid with distributed data centers,” in 2013 IEEE PES Innovative Smart Grid Technologies Conference, ISGT 2013, 2013, pp. 1–6.
  • [61] Y. Wang, X. Lin, and M. Pedram, “Coordination of the smart grid and distributed data centers: A nested game-based optimization framework,” in 2014 IEEE PES Innovative Smart Grid Technologies Conference, ISGT 2014, 2014, pp. 1–5.
  • [62] H. Wang, J. Huang, X. Lin, and H. Mohsenian-Rad, “Exploring smart grid and data center interactions for electric power load balancing,” in Performance Evaluation Review, vol. 41, no. 3, pp. 89–94, 2014.
  • [63] N. H. Tran, D. H. Tran, S. Ren, Z. Han, E. N. Huh, and C. S. Hong, “How Geo-Distributed Data Centers Do Demand Response: A Game-Theoretic Approach,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 937–947, 2016.
  • [64] N. H. Tran, S. Ren, Z. Han, S. M. Jang, S. Il Moon, and C. S. Hong, “Demand response of data centers: A real-time pricing game between utilities in smart grid,” In 9th International Workshop on Feedback Computing (Feedback Computing 14), 2014.
  • [65] Z. Zhou, F. Liu, and Z. Li, “Pricing bilateral electricity trade between smart grids and hybrid green datacenters,” Perform. Eval. Rev., vol. 43, no. 1, pp. 443–444, 2015.
  • [66] Z. Zhou, F. Liu, and Z. Li, “Bilateral Electricity Trade between Smart Grids and Green Datacenters: Pricing Models and Performance Evaluation,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3993–4007, 2016.
  • [67] L. Yu, Y. Zou, and K. Wang, “Online energy management for data centers and electric vehicles in smart grid environment,” in Proceedings of Industrial Electronics Conference, IECON, 2016, pp. 5415–5419.
  • [68] M. Thimmel, G. Fridgen, R. Keller, and P. Roevekamp, “Compensating balancing demand by spatial load migration – The case of geographically distributed data centers,” Energy Policy, vol. 132, pp. 1130–1142, 2019.
  • [69] R. Wang, N. Kandasamy, C. Nwankpa, and D. R. Kaeli, “Datacenters as controllable load resources in the electricity market,” in Proceedings of International Conference on Distributed Computing Systems, 2013, pp. 176–185.
  • [70] D. Paul, W. De Zhong, and S. K. Bose, “Energy efficiency aware load distribution and electricity cost volatility control for cloud service providers,” J. Netw. Comput. Appl., vol. 59, pp. 185–197, 2016.
  • [71] Z. Chen, L. Wu, and Z. Li, “Electric demand response management for distributed large-scale internet data centers,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 651–661, 2014.
  • [72] J. Camacho, Y. Zhang, M. Chen, and D. M. Chiu, “Balance your bids before your bits: The economics of geographic load-balancing,” in e-Energy 2014 of Proceedings of the 5th ACM International Conference on Future Energy Systems, 2014, pp. 75–85.
  • [73] Z. Zhou, F. Liu, S. Chen, and Z. Li, “A Truthful and Efficient Incentive Mechanism for Demand Response in Green Datacenters,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 1, pp. 1–15, Jan. 2020.
  • [74] M. Ghamkhari, H. Mohsenian-Rad, and A. Wierman, “Optimal risk-aware power procurement for data centers in day-ahead and real-time electricity markets,” in 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2014, pp. 610–615.
  • [75] Y. Zhang, L. Deng, M. Chen, and P. Wang, “Joint Bidding and Geographical Load Balancing for Datacenters: Is Uncertainty a Blessing or a Curse?,” IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1049–1062, 2018.
  • [76] Q. Sun, S. Ren, C. Wu, and Z. Li, “An Online Incentive Mechanism for Emergency Demand Response in Geo-Distributed Colocation Data Centers,” In Proceedings of the seventh international conference on future energy systems, 2016, pp. 1-13.
  • [77] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mechanism for emergency demand response in geo-distributed colocation data centers,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 1, no. 4, 2016.
  • [78] A. Abada and M. St-Hilaire, “Renewable Energy Curtailment via Incentivized Inter-datacenter Workload Migration,” in 11th International Conference on Cloud Computing (CLOUD), 2018, vol. 10967 LNCS, pp. 143–157.
  • [79] P. Zhang, K. Li, F. Wang, Z. Mi, H. Chen, and S. Chang, “A Cooperation Model of Data Center Cluster and Electricity Retailer Base on Demand Response,” in IEEE/IAS 56th Industrial and Commercial Power Systems Technical Conference, 2020, pp. 1–10.
  • [80] Z. Yu, Y. Guo, and M. Pan, “Coalitional datacenter energy cost optimization in electricity markets,” in Proceedings of the 8th International Conference on Future Energy Systems, e-Energy 2017, 2017, pp. 191–202.
  • [81] D. Bruneo, F. Longo, and A. Puliafito, “Evaluating energy consumption in a cloud infrastructure,” In 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2011, pp. 1-6.
  • [82] G. Kecskemeti, A. Kertesz, A. C. Marosi, and Z. Nemeth, “Strategies for Increased Energy Awareness in Cloud Federations,” in High-Performance Computing on Complex Environments, 2014, pp. 365–382.
  • [83] M. Guazzone, C. Anglano, and M. Sereno, “A game-theoretic approach to coalition formation in green cloud federations,” in Proceedings - 14th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2014, 2014, pp. 618–625.
  • [84] M. M. Hassan, M. Abdullah-Al-Wadud, A. Almogren, B. Song, and A. Alamri, “Energy-Aware Resource and Revenue Management in Federated Cloud: A Game-Theoretic Approach,” IEEE Syst. J., vol. 11, no. 2, pp. 951–961, 2017.
  • [85] M. M. Moghaddam, M. H. Manshaei, W. Saad, and M. Goudarzi, “On data center demand response: A cloud federation approach,” IEEE Access, vol. 7, pp. 101829–101843, 2019.
  • [86] G. Neglia, M. Sereno, and G. Bianchi, “Geographical Load Balancing across green datacenters: A mean field analysis,” Perform. Eval. Rev., vol. 44, no. 2, pp. 64–69, 2016.
  • [87] T. Cioara et al., “Exploiting data centres energy flexibility in smart cities: Business scenarios,” Inf. Sci. (Ny)., vol. 476, pp. 392–412, 2019.
  • [88] A. Celesti, A. Puliafito, F. Tusa, and M. Villari, “Energy sustainability in cooperating clouds,” in CLOSER 2013 - Proceedings of the 3rd International Conference on Cloud Computing and Services Science, 2013, pp. 83–89.
  • [89] M. Giacobbe, A. Celesti, M. Fazio, M. Villari, and A. Puliafito, “An approach to reduce energy costs through virtual machine migrations in cloud federation,” in Proceedings of IEEE Symposium on Computers and Communications, 2016, pp. 782–787.
  • [90] C. Dupont, G. Giuliani, F. Hermenier, T. Schulze, and A. Somov, “An energy aware framework for virtual machine placement in cloud federated data centres,” In proceddings of Third International Conference on Future Systems: Where Energy, Computing and Communication Meet (e-Energy), 2012, pp. 1-10.
دوره 18، شماره 2
پاییز و زمستان
آذر 1399