توزیع بهینه بارکاری در پردازش‌های لبه شبکه بر پایه استفاده از سیستم‌های دسته‌بند یادگیر حافظه‌دار

نویسندگان

دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

همراه با رشد روزافزون دستگاه‌های هوشمند ، مفهوم اینترنت اشیاء نیز توسعه پیداکرده است. افزایش تعداد این اشیا هوشمند سبب افزایش تولید حجم داده‌ها و بار‌های محاسباتی در مقیاس‌های وسیع شده است. به همین دلیل رایانش ابری، به‌عنوان راه‌حل اصلی جهت کنترل این بارها استفاده می‌شود. بااین‌حال، زمان‌بر بودن پردازش بار‌ها در ابر، هنوز به‌عنوان مسئله اصلی در حوزه شبکه‌های توزیع‌شده مطرح است. پردازش بار‌های کاری در لبه‌‌های شبکه می‌تواند موجب کاهش این زمان پاسخ شود؛ اما از سوی دیگر با آوردن پردازش بار‌ها از مراکز داده‌ها (متصل به برق) به سمت لبه‌های شبکه، منجر به محدودیت انرژی می‌شود. بنابراین لازم است بار‌های کاری به شکلی متوازن میان ابر‌ها و لبه‌های شبکه توزیع شوند. در این مقاله به‌منظور ایجاد تعادل میان مصرف انرژی در لبه شبکه و تأخیر بار‌های کاری در ابر‌ها، روشی مبتنی بر سیستم‌های دسته‌بند یادگیر ارائه‌شده‌ است. نتایج حاصل از شبیه‌سازی نشان می‌دهد که روش پیشنهادی در مقایسه با روش‌های پیشین، به شکل متعادل‌تری بارها را توزیع می‌کند. روش پیشنهادی سبب کاهش 42 درصدی تأخیر بارهای کاری و همچنین کاهش مصرف انرژی در لبه شبکه می‌شود.

کلیدواژه‌ها

  • [1] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, "IoT middleware: A survey on issues and enabling technologies," IEEE Internet of Things Journal, vol. 4, no. 1, pp. 1-20, 2016.
  • [2] L. Atzori, A. Iera, and G. Morabito, "The internet of things: A survey," Computer networks, vol. 54, no. 15, pp. 2787-2805, 2010.
  • [3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet of things: A survey on enabling technologies, protocols, and applications," IEEE communications surveys & tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.
  • [4] D. Macedo, L. A. Guedes, and I. Silva, "A dependability evaluation for Internet of Things incorporating redundancy aspects," in Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control, IEEE, pp. 417-422, 2014.
  • [5] N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, and M. Kellil, "Reliability for emergency applications in internet of things," in 2013 IEEE International Conference on Distributed Computing in Sensor Systems, IEEE, pp. 361-366, 2013.
  • [6] J. Kempf, J. Arkko, N. Beheshti, and K. Yedavalli, "Thoughts on reliability in the internet of things," in Interconnecting smart objects with the Internet workshop, vol. 1, pp. 1-4, 2011.
  • [7] F. Ganz, R. Li, P. Barnaghi, and H. Harai, "A resource mobility scheme for service-continuity in the Internet of Things," in IEEE International Conference on Green Computing and Communications, IEEE, pp. 261-264, 2012.
  • [8] M. Al-Garadi, and A. Mohamed, "A survey of machine and deep learning methods for internet of things (IoT) security", IEEE Communications Surveys & Tutorials, 2020.
  • [9] M. Rajan, P. Balamuralidhar, K. Chethan, and M. Swarnahpriyaah, "A self-reconfigurable sensor network management system for internet of things paradigm," in International Conference on Devices and Communications (ICDeCom), IEEE, pp. 1-5, 2011.
  • [10] D. Uckelmann, M.-A. Isenberg, M. Teucke, H. Halfar, and B. Scholz-Reiter, "Autonomous control and the internet of things: Increasing robustness, scalability and agility in logistic networks," in Unique radio innovation for the 21st century: Springer, pp. 163-181, 2011.
  • [11] C. Sarkar, S. A. U. Nambi, R. V. Prasad, and A. Rahim, "A scalable distributed architecture towards unifying IoT applications," in IEEE World Forum on Internet of Things (WF-IoT), IEEE, pp. 508-513, 2014.
  • [12] A. Dunkels, J. Eriksson, and N. Tsiftes, "Low-power Interoperability for the IPv6-based Internet of Things," in Proceedings of the 10th Scandinavian Workshop on Wireless Ad-Hoc Networks (ADHOC’11), Stockholm, Sweden, pp. 10-11, 2011.
  • [13] I. Ishaq, D. Carels, G. K. Teklemariam, J. Hoebeke, F. Van den Abeele, E. Poorter, I. Moerman, and P. Demeester., "IETF standardization in the field of the internet of things (IoT): a survey," Journal of Sensor and Actuator Networks, vol. 2, no. 2, pp. 235-287, 2013.
  • [14] M. M. Mahmoud, J. J. Rodrigues, K. Saleem, J. Al-Muhtadi, N. Kumar, and V. Korotaev, "Towards energy-aware fog-enabled cloud of things for healthcare," Computers & Electrical Engineering, vol. 67, pp. 58-69, 2018.
  • [15] K. Dolui and S. K. Datta, "Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing," in Global Internet of Things Summit (GIoTS), IEEE, pp. 1-6, 2017.
  • [16] M. Chiang and T. Zhang, "Fog and IoT: An overview of research opportunities," IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854-864, 2016.
  • [17] A. Yousefpour, F. Caleb, N. Tam, K. Krishna, F. Jalali, A. Niakanlahiji, J. Kong, and J. P. Jue., "All one needs to know about fog computing and related edge computing paradigms: A complete survey," Journal of Systems Architecture, 2019.
  • [18] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, "Resource management approaches in fog computing: a comprehensive review," Journal of Grid Computing, pp. 1-42, 2019.
  • [19] R. Basir, Q. Saad, A. Mudassar, A. Monther, I. Muhammad Ashraf, M. Aamir, and M. Gidlund, "Fog Computing Enabling Industrial Internet of Things: State-of-the-Art and Research Challenges," Sensors, vol. 19, no. 21, p. 4807, 2019.
  • [20] X. Liu and N. Ansari, "Toward green IoT: Energy solutions and key challenges," IEEE Communications Magazine, vol. 57, no. 3, pp. 104-110, 2019.
  • [21] H. Wu, L. Chen, C. Shen, W. Wen, and J. Xu, "Online geographical load balancing for energy-harvesting mobile edge computing," in IEEE International Conference on Communications (ICC), IEEE, pp. 1-6, 2018.
  • [22] S. Yi, Z. Hao, Z. Qin, and Q. Li, "Fog computing: Platform and applications," in Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), IEEE, pp. 73-78, 2015.
  • [23] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, "Saving portable computer battery power through remote process execution," ACM SIGMOBILE Mobile Computing and Communications Review, vol. 2, no. 1, pp. 19-26, 1998.
  • [24] G. C. Hunt and M. L. Scott, "A guided tour of the Coign automatic distributed partitioning system," in Proceedings Second International Enterprise Distributed Object Computing (Cat. No. 98EX244), IEEE, pp. 252-262, 1998.
  • [25] D. Kanapram, G. Lamanna, and M. Repetto, "Exploring the trade-off between performance and energy consumption in cloud infrastructures," in Second International Conference on Fog and Mobile Edge Computing (FMEC), IEEE, pp. 121-126, 2017.
  • [26] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge computing: Vision and challenges," IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, 2016.
  • [27] J. Xu and S. Ren, "Online learning for offloading and autoscaling in renewable-powered mobile edge computing," in IEEE Global Communications Conference (GLOBECOM), IEEE, pp. 1-6, 2016.
  • [28] J. Xu, L. Chen, and S. Ren, "Online learning for offloading and autoscaling in energy harvesting mobile edge computing," IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 3, pp. 361-373, 2017.
  • [29] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, "Fog computing for energy-aware load balancing and scheduling in smart factory," IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4548-4556, 2018.
  • [30] D. Zeng, L. Gu, and H. Yao, "Towards energy efficient service composition in green energy powered Cyber–Physical Fog Systems," Future Generation Computer Systems, 2018.
  • [31] Elia: Power generation. [Online]. Available: https://www.elia.be/en/grid-data/power-generation.
  • [32] L. Pier Luca, Learning Classifier Systems, From Foundations to Applications, Springer Science & Business Media, 2000.
  • [33] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI. 1975.
  • [34] S. W. Wilson, "Classifier fitness based on accuracy," Evol. Comput., vol. 3, no. 2, pp. 149-175, 1995.
  • [35] M. H. Arif, J. Li, M. Iqbal, and K. Liu, "Sentiment analysis and spam detection in short informal text using learning classifier systems," Soft Computing, vol. 22, no. 21, pp. 7281-7291, 2018.
  • [36] B. Bartin, "Use of learning classifier systems in microscopic toll plaza simulation models," IET Intelligent Transport Systems, vol. 13, no. 5, pp. 860-869, 2019.
  • [37] M. R. Karlsen and S. Moschoyiannis, "Evolution of control with learning classifier systems," Applied network science, vol. 3, no. 1, p. 30, 2018.
  • [38] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg, "Generalization in the XCSF Classifier System: Analysis, Improvement, and Extension," Evol. Comput., vol. 15, no. 2, pp. 133-168, 2007.
دوره 17، شماره 2
پاییز و زمستان
آذر 1398